DENSITY
Excel Usage
=DENSITY(data, title, xlabel, ylabel, stat_color, bandwidth, grid, legend)
data(list[list], required): Input data.title(str, optional, default: null): Chart title.xlabel(str, optional, default: null): Label for X-axis.ylabel(str, optional, default: null): Label for Y-axis.stat_color(str, optional, default: null): Line color.bandwidth(float, optional, default: 1): Smoothing bandwidth.grid(str, optional, default: “true”): Show grid lines.legend(str, optional, default: “false”): Show legend.
Returns (object): Matplotlib Figure object (standard Python) or base64 encoded PNG string (Pyodide).
Examples
Example 1: KDE with single distribution
Inputs:
| data |
|---|
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
| 6 |
| 7 |
| 8 |
| 9 |
| 10 |
Excel formula:
=DENSITY({1;2;3;4;5;6;7;8;9;10})
Expected output:
"chart"
Example 2: KDE with multiple distributions
Inputs:
| data | |
|---|---|
| 1 | 10 |
| 2 | 20 |
| 3 | 30 |
| 4 | 40 |
| 5 | 50 |
Excel formula:
=DENSITY({1,10;2,20;3,30;4,40;5,50})
Expected output:
"chart"
Example 3: KDE with custom labels and bandwidth
Inputs:
| data | title | xlabel | ylabel | bandwidth |
|---|---|---|---|---|
| 1.5 | Test KDE | Value | Probability Density | 0.5 |
| 2.3 | ||||
| 3.1 | ||||
| 4.8 | ||||
| 5.2 | ||||
| 6.7 | ||||
| 7.1 |
Excel formula:
=DENSITY({1.5;2.3;3.1;4.8;5.2;6.7;7.1}, "Test KDE", "Value", "Probability Density", 0.5)
Expected output:
"chart"
Example 4: KDE with narrow bandwidth
Inputs:
| data | bandwidth |
|---|---|
| 1 | 0.2 |
| 2 | |
| 3 | |
| 4 | |
| 5 | |
| 6 | |
| 7 | |
| 8 | |
| 9 | |
| 10 |
Excel formula:
=DENSITY({1;2;3;4;5;6;7;8;9;10}, 0.2)
Expected output:
"chart"
Python Code
import sys
import matplotlib
IS_PYODIDE = sys.platform == "emscripten"
if IS_PYODIDE:
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import io
import base64
import numpy as np
from scipy.stats import gaussian_kde
def density(data, title=None, xlabel=None, ylabel=None, stat_color=None, bandwidth=1, grid='true', legend='false'):
"""
Create a Kernel Density Estimate (KDE) plot.
See: https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.plot.html
This example function is provided as-is without any representation of accuracy.
Args:
data (list[list]): Input data.
title (str, optional): Chart title. Default is None.
xlabel (str, optional): Label for X-axis. Default is None.
ylabel (str, optional): Label for Y-axis. Default is None.
stat_color (str, optional): Line color. Valid options: Blue, Green, Red, Cyan, Magenta, Yellow, Black, White. Default is None.
bandwidth (float, optional): Smoothing bandwidth. Default is 1.
grid (str, optional): Show grid lines. Valid options: True, False. Default is 'true'.
legend (str, optional): Show legend. Valid options: True, False. Default is 'false'.
Returns:
object: Matplotlib Figure object (standard Python) or base64 encoded PNG string (Pyodide).
"""
def to2d(x):
return [[x]] if not isinstance(x, list) else x
def str_to_bool(s):
return s.lower() == "true" if isinstance(s, str) else bool(s)
try:
data = to2d(data)
if not isinstance(data, list) or not all(isinstance(row, list) for row in data):
return "Error: Invalid input - data must be a 2D list"
# Extract numeric columns
cols = []
max_rows = max(len(row) for row in data) if data else 0
for col_idx in range(max_rows):
col_data = []
for row in data:
if col_idx < len(row):
val = row[col_idx]
try:
col_data.append(float(val))
except (TypeError, ValueError):
continue
if col_data:
cols.append(col_data)
if not cols:
return "Error: No valid numeric data found"
# Create plot
fig, ax = plt.subplots(figsize=(8, 6))
# Plot KDE for each column
for i, col in enumerate(cols):
if len(col) < 2:
continue
kde = gaussian_kde(col, bw_method=bandwidth)
x_range = np.linspace(min(col), max(col), 200)
density_vals = kde(x_range)
color = stat_color if stat_color else None
ax.plot(x_range, density_vals, color=color,
label=f'Column {i+1}' if len(cols) > 1 else None)
ax.fill_between(x_range, density_vals, alpha=0.3, color=color)
if title:
ax.set_title(title)
if xlabel:
ax.set_xlabel(xlabel)
if ylabel:
ax.set_ylabel(ylabel)
else:
ax.set_ylabel('Density')
if str_to_bool(grid):
ax.grid(True, alpha=0.3)
if str_to_bool(legend) and len(cols) > 1:
ax.legend()
plt.tight_layout()
# Return based on platform
if IS_PYODIDE:
buf = io.BytesIO()
plt.savefig(buf, format='png', dpi=100, bbox_inches='tight')
buf.seek(0)
img_base64 = base64.b64encode(buf.read()).decode('utf-8')
plt.close(fig)
return f"data:image/png;base64,{img_base64}"
else:
return fig
except Exception as e:
return f"Error: {str(e)}"