DOT_PLOT
Excel Usage
=DOT_PLOT(data, title, xlabel, ylabel, plot_color, marker, legend)
data(list[list], required): Input data (Labels, Values).title(str, optional, default: null): Chart title.xlabel(str, optional, default: null): Label for X-axis.ylabel(str, optional, default: null): Label for Y-axis.plot_color(str, optional, default: “blue”): Dot color.marker(str, optional, default: “o”): Marker style.legend(str, optional, default: “false”): Show legend.
Returns (object): Matplotlib Figure object (standard Python) or base64 encoded PNG string (Pyodide).
Examples
Example 1: Simple Cleveland dot plot
Inputs:
| data | |
|---|---|
| Category A | 25 |
| Category B | 40 |
| Category C | 15 |
| Category D | 30 |
Excel formula:
=DOT_PLOT({"Category A",25;"Category B",40;"Category C",15;"Category D",30})
Expected output:
"chart"
Example 2: Dot plot with custom labels
Inputs:
| data | title | xlabel | ylabel | |
|---|---|---|---|---|
| Item 1 | 10 | Item Comparison | Values | Items |
| Item 2 | 20 | |||
| Item 3 | 15 |
Excel formula:
=DOT_PLOT({"Item 1",10;"Item 2",20;"Item 3",15}, "Item Comparison", "Values", "Items")
Expected output:
"chart"
Example 3: Dot plot with square markers
Inputs:
| data | plot_color | marker | |
|---|---|---|---|
| A | 5 | red | s |
| B | 10 | ||
| C | 8 |
Excel formula:
=DOT_PLOT({"A",5;"B",10;"C",8}, "red", "s")
Expected output:
"chart"
Example 4: Dot plot with legend and triangle markers
Inputs:
| data | legend | marker | plot_color | |
|---|---|---|---|---|
| Group 1 | 50 | true | ^ | green |
| Group 2 | 75 | |||
| Group 3 | 60 |
Excel formula:
=DOT_PLOT({"Group 1",50;"Group 2",75;"Group 3",60}, "true", "^", "green")
Expected output:
"chart"
Python Code
import sys
import matplotlib
IS_PYODIDE = sys.platform == "emscripten"
if IS_PYODIDE:
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import io
import base64
import numpy as np
def dot_plot(data, title=None, xlabel=None, ylabel=None, plot_color='blue', marker='o', legend='false'):
"""
Create a Cleveland dot plot from data.
See: https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.scatter.html
This example function is provided as-is without any representation of accuracy.
Args:
data (list[list]): Input data (Labels, Values).
title (str, optional): Chart title. Default is None.
xlabel (str, optional): Label for X-axis. Default is None.
ylabel (str, optional): Label for Y-axis. Default is None.
plot_color (str, optional): Dot color. Valid options: Blue, Green, Red, Cyan, Magenta, Yellow, Black, White. Default is 'blue'.
marker (str, optional): Marker style. Valid options: None, Point, Pixel, Circle, Square, Triangle Down, Triangle Up. Default is 'o'.
legend (str, optional): Show legend. Valid options: True, False. Default is 'false'.
Returns:
object: Matplotlib Figure object (standard Python) or base64 encoded PNG string (Pyodide).
"""
def to2d(x):
return [[x]] if not isinstance(x, list) else x
try:
data = to2d(data)
if not isinstance(data, list) or len(data) < 1:
return "Error: Data must be a non-empty list"
# Extract labels and values
labels = []
values = []
for row in data:
if not isinstance(row, list) or len(row) < 2:
continue
try:
labels.append(str(row[0]))
values.append(float(row[1]))
except (ValueError, TypeError):
continue
if len(labels) == 0 or len(values) == 0:
return "Error: No valid data rows found"
# Create figure
fig, ax = plt.subplots(figsize=(8, 6))
# Create dot plot (Cleveland style)
y_pos = np.arange(len(labels))
# Draw lines from 0 to value
for i, val in enumerate(values):
ax.plot([0, val], [i, i], 'k-', linewidth=1, alpha=0.5)
# Draw dots
ax.scatter(values, y_pos, color=plot_color, marker=marker, s=100, zorder=3)
# Set labels
ax.set_yticks(y_pos)
ax.set_yticklabels(labels)
if title:
ax.set_title(title)
if xlabel:
ax.set_xlabel(xlabel)
if ylabel:
ax.set_ylabel(ylabel)
# Handle legend
if legend == "true":
ax.legend(['Data'], loc="best")
ax.grid(axis='x', alpha=0.3)
plt.tight_layout()
if IS_PYODIDE:
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight')
plt.close(fig)
buf.seek(0)
img_base64 = base64.b64encode(buf.read()).decode('utf-8')
return f"data:image/png;base64,{img_base64}"
else:
return fig
except Exception as e:
return f"Error: {str(e)}"