CLUSTER_MAP
Excel Usage
=CLUSTER_MAP(data, title, color_map, colorbar)
data(list[list], required): Input matrix data.title(str, optional, default: null): Chart title.color_map(str, optional, default: “viridis”): Color map.colorbar(str, optional, default: “true”): Show colorbar.
Returns (object): Matplotlib Figure object (standard Python) or base64 encoded PNG string (Pyodide).
Examples
Example 1: Basic clustered heatmap
Inputs:
| data | ||
|---|---|---|
| 1 | 2 | 3 |
| 4 | 5 | 6 |
| 7 | 8 | 9 |
| 2 | 3 | 4 |
Excel formula:
=CLUSTER_MAP({1,2,3;4,5,6;7,8,9;2,3,4})
Expected output:
"chart"
Example 2: Cluster map with title
Inputs:
| data | title | ||
|---|---|---|---|
| 1 | 2 | 3 | My Cluster Map |
| 4 | 5 | 6 | |
| 7 | 8 | 9 | |
| 10 | 11 | 12 |
Excel formula:
=CLUSTER_MAP({1,2,3;4,5,6;7,8,9;10,11,12}, "My Cluster Map")
Expected output:
"chart"
Example 3: Cluster map with plasma colormap
Inputs:
| data | color_map | ||
|---|---|---|---|
| 1 | 5 | 3 | plasma |
| 4 | 2 | 6 | |
| 7 | 9 | 8 | |
| 2 | 4 | 1 |
Excel formula:
=CLUSTER_MAP({1,5,3;4,2,6;7,9,8;2,4,1}, "plasma")
Expected output:
"chart"
Example 4: Cluster map without colorbar
Inputs:
| data | colorbar | |
|---|---|---|
| 1 | 2 | false |
| 3 | 4 | |
| 5 | 6 |
Excel formula:
=CLUSTER_MAP({1,2;3,4;5,6}, "false")
Expected output:
"chart"
Python Code
import sys
import matplotlib
IS_PYODIDE = sys.platform == "emscripten"
if IS_PYODIDE:
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import io
import base64
import numpy as np
from scipy.cluster.hierarchy import dendrogram, linkage
def cluster_map(data, title=None, color_map='viridis', colorbar='true'):
"""
Create a hierarchically-clustered heatmap.
See: https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.imshow.html
This example function is provided as-is without any representation of accuracy.
Args:
data (list[list]): Input matrix data.
title (str, optional): Chart title. Default is None.
color_map (str, optional): Color map. Valid options: Viridis, Plasma, Inferno, Magma, Cividis. Default is 'viridis'.
colorbar (str, optional): Show colorbar. Valid options: True, False. Default is 'true'.
Returns:
object: Matplotlib Figure object (standard Python) or base64 encoded PNG string (Pyodide).
"""
def to2d(x):
return [[x]] if not isinstance(x, list) else x
try:
data = to2d(data)
if not isinstance(data, list) or not all(isinstance(row, list) for row in data):
return "Error: Invalid input - data must be a 2D list"
# Convert to numpy array
try:
arr = np.array(data, dtype=float)
except (ValueError, TypeError) as e:
return f"Error: Could not convert data to numeric array: {str(e)}"
if arr.ndim != 2:
return "Error: Data must be a 2D array"
if arr.size == 0:
return "Error: Data array is empty"
if arr.shape[0] < 2:
return "Error: Need at least 2 rows for clustering"
# Perform hierarchical clustering
try:
# Cluster rows
row_linkage = linkage(arr, method='average')
row_order = dendrogram(row_linkage, no_plot=True)['leaves']
# Cluster columns
col_linkage = linkage(arr.T, method='average')
col_order = dendrogram(col_linkage, no_plot=True)['leaves']
# Reorder data
arr_clustered = arr[row_order, :][:, col_order]
except Exception as e:
return f"Error: Clustering failed: {str(e)}"
# Create figure with subplots for dendrograms and heatmap
fig = plt.figure(figsize=(10, 8))
# Dendrogram for rows (left)
ax_row = plt.subplot2grid((4, 4), (1, 0), rowspan=3)
row_dend = dendrogram(row_linkage, orientation='left', no_labels=True)
ax_row.set_xticks([])
ax_row.set_yticks([])
ax_row.axis('off')
# Dendrogram for columns (top)
ax_col = plt.subplot2grid((4, 4), (0, 1), colspan=3)
col_dend = dendrogram(col_linkage, no_labels=True)
ax_col.set_xticks([])
ax_col.set_yticks([])
ax_col.axis('off')
# Heatmap (main)
ax_heatmap = plt.subplot2grid((4, 4), (1, 1), rowspan=3, colspan=3)
im = ax_heatmap.imshow(arr_clustered, cmap=color_map, aspect='auto')
ax_heatmap.set_xticks([])
ax_heatmap.set_yticks([])
# Add colorbar if requested
show_colorbar = colorbar.lower() == "true"
if show_colorbar:
plt.colorbar(im, ax=ax_heatmap)
# Set title
if title:
fig.suptitle(title, y=0.98)
plt.tight_layout()
# Return based on environment
if IS_PYODIDE:
buf = io.BytesIO()
plt.savefig(buf, format='png', dpi=100, bbox_inches='tight')
buf.seek(0)
img_base64 = base64.b64encode(buf.read()).decode('utf-8')
plt.close(fig)
return f"data:image/png;base64,{img_base64}"
else:
return fig
except Exception as e:
return f"Error: {str(e)}"