BOXPLOT

Excel Usage

=BOXPLOT(data, title, xlabel, ylabel, stat_color, vert, outliers, grid)
  • data (list[list], required): Input data.
  • title (str, optional, default: null): Chart title.
  • xlabel (str, optional, default: null): Label for X-axis.
  • ylabel (str, optional, default: null): Label for Y-axis.
  • stat_color (str, optional, default: null): Box color.
  • vert (str, optional, default: “true”): Orientation (‘true’ for vertical, ‘false’ for horizontal).
  • outliers (str, optional, default: “true”): Show outliers.
  • grid (str, optional, default: “true”): Show grid lines.

Returns (object): Matplotlib Figure object (standard Python) or base64 encoded PNG string (Pyodide).

Examples

Example 1: Boxplot with single group

Inputs:

data
1
2
3
4
5
6
7
8
9
10

Excel formula:

=BOXPLOT({1;2;3;4;5;6;7;8;9;10})

Expected output:

"chart"

Example 2: Boxplot with multiple groups

Inputs:

data
1 10 100
2 20 200
3 30 300
4 40 400
5 50 500

Excel formula:

=BOXPLOT({1,10,100;2,20,200;3,30,300;4,40,400;5,50,500})

Expected output:

"chart"

Example 3: Horizontal boxplot with labels

Inputs:

data vert title xlabel ylabel
1 false Test Boxplot Value Group
2
3
4
5
6
7

Excel formula:

=BOXPLOT({1;2;3;4;5;6;7}, "false", "Test Boxplot", "Value", "Group")

Expected output:

"chart"

Example 4: Boxplot without outliers

Inputs:

data outliers
1 false
2
3
100
200

Excel formula:

=BOXPLOT({1;2;3;100;200}, "false")

Expected output:

"chart"

Python Code

import sys
import matplotlib
IS_PYODIDE = sys.platform == "emscripten"
if IS_PYODIDE:
    matplotlib.use('Agg')
import matplotlib.pyplot as plt
import io
import base64
import numpy as np

def boxplot(data, title=None, xlabel=None, ylabel=None, stat_color=None, vert='true', outliers='true', grid='true'):
    """
    Create a box-and-whisker plot from data.

    See: https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.boxplot.html

    This example function is provided as-is without any representation of accuracy.

    Args:
        data (list[list]): Input data.
        title (str, optional): Chart title. Default is None.
        xlabel (str, optional): Label for X-axis. Default is None.
        ylabel (str, optional): Label for Y-axis. Default is None.
        stat_color (str, optional): Box color. Valid options: Blue, Green, Red, Cyan, Magenta, Yellow, Black, White. Default is None.
        vert (str, optional): Orientation ('true' for vertical, 'false' for horizontal). Valid options: True, False. Default is 'true'.
        outliers (str, optional): Show outliers. Valid options: True, False. Default is 'true'.
        grid (str, optional): Show grid lines. Valid options: True, False. Default is 'true'.

    Returns:
        object: Matplotlib Figure object (standard Python) or base64 encoded PNG string (Pyodide).
    """
    def to2d(x):
        return [[x]] if not isinstance(x, list) else x

    def str_to_bool(s):
        return s.lower() == "true" if isinstance(s, str) else bool(s)

    try:
        data = to2d(data)

        if not isinstance(data, list) or not all(isinstance(row, list) for row in data):
            return "Error: Invalid input - data must be a 2D list"

        # Extract numeric columns
        cols = []
        max_rows = max(len(row) for row in data) if data else 0

        for col_idx in range(max_rows):
            col_data = []
            for row in data:
                if col_idx < len(row):
                    val = row[col_idx]
                    try:
                        col_data.append(float(val))
                    except (TypeError, ValueError):
                        continue
            if col_data:
                cols.append(col_data)

        if not cols:
            return "Error: No valid numeric data found"

        # Create plot
        fig, ax = plt.subplots(figsize=(8, 6))

        # Plot boxplot
        bp = ax.boxplot(cols, vert=str_to_bool(vert), 
                        showfliers=str_to_bool(outliers),
                        patch_artist=True)

        # Set color
        if stat_color:
            for patch in bp['boxes']:
                patch.set_facecolor(stat_color)

        if title:
            ax.set_title(title)
        if xlabel:
            ax.set_xlabel(xlabel)
        if ylabel:
            ax.set_ylabel(ylabel)

        if str_to_bool(grid):
            ax.grid(True, alpha=0.3)

        plt.tight_layout()

        # Return based on platform
        if IS_PYODIDE:
            buf = io.BytesIO()
            plt.savefig(buf, format='png', dpi=100, bbox_inches='tight')
            buf.seek(0)
            img_base64 = base64.b64encode(buf.read()).decode('utf-8')
            plt.close(fig)
            return f"data:image/png;base64,{img_base64}"
        else:
            return fig
    except Exception as e:
        return f"Error: {str(e)}"

Online Calculator