CORRELATION
Excel Usage
=CORRELATION(data, title, corr_colors, values, colorbar)
data(list[list], required): Input variables.title(str, optional, default: null): Chart title.corr_colors(str, optional, default: “coolwarm”): Color map.values(str, optional, default: “true”): Show values.colorbar(str, optional, default: “true”): Show colorbar.
Returns (object): Matplotlib Figure object (standard Python) or base64 encoded PNG string (Pyodide).
Examples
Example 1: Correlation matrix from 3 variables
Inputs:
| data | ||||
|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 |
| 2 | 4 | 6 | 8 | 10 |
| 5 | 4 | 3 | 2 | 1 |
Excel formula:
=CORRELATION({1,2,3,4,5;2,4,6,8,10;5,4,3,2,1})
Expected output:
"chart"
Example 2: Correlation matrix with custom title
Inputs:
| data | title | ||
|---|---|---|---|
| 1 | 2 | 3 | My Correlation |
| 4 | 5 | 6 | |
| 7 | 8 | 9 |
Excel formula:
=CORRELATION({1,2,3;4,5,6;7,8,9}, "My Correlation")
Expected output:
"chart"
Example 3: Correlation with Blues colormap
Inputs:
| data | corr_colors | ||
|---|---|---|---|
| 1 | 2 | 3 | Blues |
| 2 | 3 | 4 |
Excel formula:
=CORRELATION({1,2,3;2,3,4}, "Blues")
Expected output:
"chart"
Example 4: Correlation showing values
Inputs:
| data | values | |||
|---|---|---|---|---|
| 1 | 2 | 3 | 4 | true |
| 5 | 6 | 7 | 8 |
Excel formula:
=CORRELATION({1,2,3,4;5,6,7,8}, "true")
Expected output:
"chart"
Python Code
import sys
import matplotlib
IS_PYODIDE = sys.platform == "emscripten"
if IS_PYODIDE:
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import io
import base64
import numpy as np
def correlation(data, title=None, corr_colors='coolwarm', values='true', colorbar='true'):
"""
Create a correlation matrix heatmap from data.
See: https://matplotlib.org/stable/gallery/images_contours_and_fields/image_annotated_heatmap.html
This example function is provided as-is without any representation of accuracy.
Args:
data (list[list]): Input variables.
title (str, optional): Chart title. Default is None.
corr_colors (str, optional): Color map. Valid options: Coolwarm, Viridis, Blues, Reds. Default is 'coolwarm'.
values (str, optional): Show values. Valid options: True, False. Default is 'true'.
colorbar (str, optional): Show colorbar. Valid options: True, False. Default is 'true'.
Returns:
object: Matplotlib Figure object (standard Python) or base64 encoded PNG string (Pyodide).
"""
def to2d(x):
return [[x]] if not isinstance(x, list) else x
try:
data = to2d(data)
if not isinstance(data, list) or not all(isinstance(row, list) for row in data):
return "Error: Invalid input - data must be a 2D list"
# Convert to numpy array
try:
arr = np.array(data, dtype=float)
except (ValueError, TypeError) as e:
return f"Error: Could not convert data to numeric array: {str(e)}"
if arr.ndim != 2:
return "Error: Data must be a 2D array"
if arr.size == 0:
return "Error: Data array is empty"
# Transpose to get variables in columns
if arr.shape[0] > arr.shape[1]:
arr = arr.T
# Calculate correlation matrix
try:
corr_matrix = np.corrcoef(arr)
except Exception as e:
return f"Error: Could not calculate correlation matrix: {str(e)}"
if corr_matrix.ndim == 0:
# Single variable case
corr_matrix = np.array([[1.0]])
# Create figure
fig, ax = plt.subplots(figsize=(8, 6))
# Create heatmap
im = ax.imshow(corr_matrix, cmap=corr_colors, aspect='auto', vmin=-1, vmax=1)
# Add colorbar if requested
show_colorbar = colorbar.lower() == "true"
if show_colorbar:
plt.colorbar(im, ax=ax)
# Add values if requested
show_values = values.lower() == "true"
if show_values:
for i in range(corr_matrix.shape[0]):
for j in range(corr_matrix.shape[1]):
text = ax.text(j, i, f'{corr_matrix[i, j]:.2f}',
ha="center", va="center", color="black")
# Set labels
if title:
ax.set_title(title)
else:
ax.set_title("Correlation Matrix")
# Set ticks
n = corr_matrix.shape[0]
ax.set_xticks(range(n))
ax.set_yticks(range(n))
ax.set_xticklabels([f"Var{i+1}" for i in range(n)])
ax.set_yticklabels([f"Var{i+1}" for i in range(n)])
plt.tight_layout()
# Return based on environment
if IS_PYODIDE:
buf = io.BytesIO()
plt.savefig(buf, format='png', dpi=100, bbox_inches='tight')
buf.seek(0)
img_base64 = base64.b64encode(buf.read()).decode('utf-8')
plt.close(fig)
return f"data:image/png;base64,{img_base64}"
else:
return fig
except Exception as e:
return f"Error: {str(e)}"