BAR_3D
Excel Usage
=BAR_3D(data, title, xlabel, ylabel, zlabel, color_map, legend)
data(list[list], required): Input data (X, Y, Z).title(str, optional, default: null): Chart title.xlabel(str, optional, default: null): Label for X-axis.ylabel(str, optional, default: null): Label for Y-axis.zlabel(str, optional, default: null): Label for Z-axis.color_map(str, optional, default: “viridis”): Color map for bars.legend(str, optional, default: “false”): Show legend.
Returns (object): Matplotlib Figure object (standard Python) or base64 encoded PNG string (Pyodide).
Examples
Example 1: Basic 3D bar chart
Inputs:
| data | ||
|---|---|---|
| 0 | 0 | 1 |
| 1 | 0 | 2 |
| 0 | 1 | 3 |
| 1 | 1 | 4 |
Excel formula:
=BAR_3D({0,0,1;1,0,2;0,1,3;1,1,4})
Expected output:
"chart"
Example 2: 3D bars with labels
Inputs:
| data | title | xlabel | ylabel | zlabel | ||
|---|---|---|---|---|---|---|
| 0 | 0 | 5 | Bar Chart | X | Y | Height |
| 1 | 0 | 10 | ||||
| 0 | 1 | 15 | ||||
| 1 | 1 | 20 |
Excel formula:
=BAR_3D({0,0,5;1,0,10;0,1,15;1,1,20}, "Bar Chart", "X", "Y", "Height")
Expected output:
"chart"
Example 3: Using plasma colormap
Inputs:
| data | color_map | ||
|---|---|---|---|
| 0 | 0 | 2 | plasma |
| 1 | 0 | 4 | |
| 2 | 0 | 6 | |
| 0 | 1 | 8 |
Excel formula:
=BAR_3D({0,0,2;1,0,4;2,0,6;0,1,8}, "plasma")
Expected output:
"chart"
Example 4: Bars with legend
Inputs:
| data | legend | ||
|---|---|---|---|
| 0 | 0 | 1 | true |
| 1 | 0 | 2 | |
| 0 | 1 | 3 |
Excel formula:
=BAR_3D({0,0,1;1,0,2;0,1,3}, "true")
Expected output:
"chart"
Python Code
import sys
import matplotlib
IS_PYODIDE = sys.platform == "emscripten"
if IS_PYODIDE:
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import io
import base64
import numpy as np
def bar_3d(data, title=None, xlabel=None, ylabel=None, zlabel=None, color_map='viridis', legend='false'):
"""
Create a 3D bar chart.
See: https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.bar3d.html
This example function is provided as-is without any representation of accuracy.
Args:
data (list[list]): Input data (X, Y, Z).
title (str, optional): Chart title. Default is None.
xlabel (str, optional): Label for X-axis. Default is None.
ylabel (str, optional): Label for Y-axis. Default is None.
zlabel (str, optional): Label for Z-axis. Default is None.
color_map (str, optional): Color map for bars. Valid options: Viridis, Plasma, Inferno, Magma, Cividis. Default is 'viridis'.
legend (str, optional): Show legend. Valid options: True, False. Default is 'false'.
Returns:
object: Matplotlib Figure object (standard Python) or base64 encoded PNG string (Pyodide).
"""
def to2d(x):
return [[x]] if not isinstance(x, list) else x
try:
data = to2d(data)
if not isinstance(data, list) or not all(isinstance(row, list) for row in data):
return "Error: Invalid input - data must be a 2D list"
# Flatten and validate data
flat_data = []
for row in data:
for val in row:
try:
flat_data.append(float(val))
except (TypeError, ValueError):
return f"Error: Non-numeric value found: {val}"
if len(flat_data) < 3:
return "Error: Need at least 3 values for X, Y, Z coordinates"
# Parse data into columns
num_rows = len(data)
num_cols = len(data[0]) if num_rows > 0 else 0
if num_cols < 3:
return "Error: Need at least 3 columns for X, Y, Z coordinates"
# Extract X, Y, Z columns
x_vals = np.array([float(data[i][0]) for i in range(num_rows)])
y_vals = np.array([float(data[i][1]) for i in range(num_rows)])
z_vals = np.array([float(data[i][2]) for i in range(num_rows)])
# Create figure
fig = plt.figure(figsize=(10, 7))
ax = fig.add_subplot(111, projection='3d')
# Bar dimensions
dx = dy = 0.5 # Bar width
dz = z_vals # Bar heights
# Color mapping
cmap = plt.get_cmap(color_map)
colors = cmap(z_vals / z_vals.max())
# Create 3D bar chart
ax.bar3d(x_vals, y_vals, np.zeros(len(z_vals)), dx, dy, dz, color=colors, shade=True)
# Set labels
if title:
ax.set_title(title)
if xlabel:
ax.set_xlabel(xlabel)
if ylabel:
ax.set_ylabel(ylabel)
if zlabel:
ax.set_zlabel(zlabel)
# Add legend if requested
if legend == "true":
ax.legend(['Bars'])
# Return based on platform
if IS_PYODIDE:
buf = io.BytesIO()
plt.savefig(buf, format='png', dpi=100, bbox_inches='tight')
buf.seek(0)
img_base64 = base64.b64encode(buf.read()).decode('utf-8')
plt.close(fig)
return f"data:image/png;base64,{img_base64}"
else:
return fig
except Exception as e:
return f"Error: {str(e)}"